首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   15篇
  国内免费   1篇
地球科学   173篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   9篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   14篇
  2014年   10篇
  2013年   6篇
  2012年   11篇
  2011年   13篇
  2010年   12篇
  2009年   15篇
  2008年   9篇
  2007年   10篇
  2006年   8篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1963年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
71.
Over the last decades, the reduction of manpower for herd management has led to an increase of continuous grazing systems(CGS) in the Italian Alps, which allow cattle to roam freely. Under CGS, due to high selectivity, livestock exploit grasslands unevenly, over-and under-using specific areas at the same time with negative effects on their conservation. To counteract these effects, a specific policy and management tool(i.e. Grazing Management Plan) has been implemented by Piedmont Region since 2010. The Grazing Management Plans are based on the implementation of rotational grazing systems(RGS), with animal stocking rate adjusted to balance it with grassland carrying capacity. A case study was conducted on alpine summer pastures to test the 5-year effects produced by the implementation of a Grazing Management Plan in grasslands formerly managed under several years of CGS on 1) the selection for different vegetation communities by cattle, 2) the abundance of oligo-, meso-, and eutrophic plant species(defined according to Landolt N indicator value), and 3) forage yield, quality, and palatability. A total of 193 vegetation surveys were carried out in 2011 and repeated in 2016. Cows were tracked yearly with Global Positioning System collars to assess their grazing selectivity, and forage Pastoral Value(PV) was computed to evaluate forage yield, quality, and palatability. Five years after RGS implementation, cow selectivity significantly decreased and the preference for the different vegetation communities was more balanced than under CGS. The abundance of meso-and eutrophic species increased, whereas oligotrophic ones decreased. Moreover, the abundance of moderately to highly palatable plant species increased, whereas non-palatable plant species decreased, with a consequent significant enhancement of the PV. Our findings indicate that the implementation of Grazing Management Plans can be considered a sustainable and effective management tool for improving pasture selection by cattle and forage quality in mountain pastures.  相似文献   
72.
This study from the southern margin of the Gulf of Corinth documents a Late Pleistocene incised valley‐fill succession that differs from the existing facies models, because it comprises gravelly shoal‐water and Gilbert‐type deltaic deposits, shows strong wave influence and lacks evidence of tidal activity. The valley‐fill is at least 140 m thick, formed in 50 to 100 ka between the interglacials Marine Isotope Stage 9a and Marine Isotope Stage 7c. The relative sea‐level rise left its record both inside and outside the incised valley, and the age of the valley‐fill is estimated from a U/Th date of coral‐bearing deposits directly outside the palaeovalley outlet. Tectonic up‐warping due to formation of a valley‐parallel structural relay ramp contributed to the valley segmentation and limited the landward extent of marine invasions. The valley segment upstream of the ramp crest was filled with a gravelly alluvium, whereas the downstream segment accumulated fluvio‐deltaic deposits. The consecutive deltaic systems nucleated in the ramp‐crest zone, forming a bathymetric gradient that promoted the ultimate growth of thick Gilbert‐type delta. The case study contributes to the spectrum of conceptual models for incised valley‐fill architecture. Four key models are discussed with reference to the rates of sediment supply and accommodation development, and it is pointed out that not only similarity, but also all departures of particular field cases from these end‐member models may provide valuable information on the system formative conditions. The Akrata incised valley‐fill represents conditions of high sediment supply and a rapid, but stepwise development of accommodation that resulted from the spatiotemporal evolution of normal faulting at the rift margin and overprinted glacioeustatic signals. This study adds to an understanding of valley‐fill architecture and provides new insights into the Pleistocene tectonics and palaeogeography of the Corinth Rift margin.  相似文献   
73.
Using a three degrees of freedom quasi-integrable Hamiltonian as a model problem, we numerically compute the unstable manifolds of the hyperbolic manifolds of the phase space related to single resonances. We measure an exponential dependence of the splitting of these manifolds through many orders of magnitude of the perturbing parameter. This is an indirect numerical verification of the exponential decay of the normal form, as predicted by the Nekhoroshev theorem. We also detect different transitions in the topology of these manifolds related to the local rational approximations of the frequencies. The variation of the size of the homoclinic tangle as well as the topological transitions turn out to be correlated to the speed of Arnold diffusion.  相似文献   
74.
75.
In this contribution we present our preliminary investigation on pulsar sensitivity of the Large Area Telescope, the main instrument aboard the GLAST mission. In particular we concentrated our attention to pulsars located at low galactic latitudes. We created a set of simulated pulsars having different fluxes in an array of galactic coordinates separated by a distance greater than the LAT Point Spread Function in order to avoid confusion between adjacent sources. Galactic gamma-ray sky background as used during the second LAT Data Challenge (DC2) is also included. We then run an automatic routine for testing periodicity for all the pulsars considering an opportune timing solution. In this way we can obtain a map of the sensitivity of the periodic searches for different fluxes and for various Galactic latitudes. Some assumptions have been made by simulating the pulsar sources, but this study is a first step toward an estimate for pulsed emission sensitivity of the GLAST LAT. The pulsed flux sensitivity profile we generate could also be input to a population synthesis code of Galactic pulsars in order to obtain more accurate predictions of the number of expected pulsar detections by GLAST. On behalf of the GLAST LAT Collaboration.  相似文献   
76.
The present paper reviews the Nekhoroshev theorem from the point of view of physicists and astronomers. We point out that Nekhoroshev result is strictly connected with the existence of a specific structure of the phase space, the existence of which can be checked with several numerical tools. This is true also for a degenerate system such as the one describing the motion of an asteroid in the so called main belt. The main difference is that in some parts of the belt, the Nekhoroshev result cannot apply a priori. Mean motion resonances of order smaller than the logarithm of the mass of Jupiter and first order secular resonances must be excluded. In the remaining parts, conversely, the Nekhoroshev theorem can be proved, provided someparameters, such as the masses, the eccentricities and the inclinations of the planets are small enough. At the light of this result, a massive campaign of numerical integrations of real and fictitious asteroids should allow to understand which is the real dynamical structure of the asteroid belt.  相似文献   
77.
Projection, or conjugate gradient like, methods are becoming increasingly popular for the efficient solution of large sparse sets of unsymmetric indefinite equations arising from the numerical integration of (initial) boundary value problems. One such problem is soil consolidation coupling a flow and a structural model, typically solved by finite elements (FE) in space and a marching scheme in time (e.g. the Crank–Nicolson scheme). The attraction of a projection method stems from a number of factors, including the ease of implementation, the requirement of limited core memory and the low computational cost if a cheap and effective matrix preconditioner is available. In the present paper, biconjugate gradient stabilized (Bi‐ CGSTAB) is used to solve FE consolidation equations in 2‐D and 3‐D settings with variable time integration steps. Three different nodal orderings are selected along with the preconditioner ILUT based on incomplete triangular factorization and variable fill‐in. The overall cost of the solver is made up of the preconditioning cost plus the cost to converge which is in turn related to the number of iterations and the elementary operations required by each iteration. The results show that nodal ordering affects the perfor mance of Bi‐CGSTAB. For normally conditioned consolidation problems Bi‐CGSTAB with the best ILUT preconditioner may converge in a number of iterations up to two order of magnitude smaller than the size of the FE model and proves an accurate, cost‐effective and robust alternative to direct methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
78.
River bends occasionally meander to the point of cutoff, whereby a river shortcuts itself and isolates a portion of its course. This fundamental process fingerprints a river's long-term planform geometry, its stratigraphic record, and biogeochemical fluxes in the floodplain. Although meander cutoffs are common in fast-migrating channels, timelapse imagery of the Earth surface typically does not offer a long enough baseline for statistically robust analyses of these processes. We seek to bridge this gap by quantifying cutoff kinematics along the Humboldt River (Nevada) – a stream that, from 1994 to 2019, hosted an exceptionally high number of cutoffs (specifically, 174 of the chute type and 53 of the neck type). A coincidence between major floods and cutoff incidence is first suggestive of hydrographic modulation. Moreover, not just higher sinuosity but also upstream planform skewness is associated with higher cutoff incidence and channel widening for a sub-population of chute cutoffs. We propose a conceptual model to explain our results in terms of channel-flow structure and then examine the distances between adjacent cutoffs to understand the mechanisms governing their clustering. We find that both local and nonlocal perturbations together trigger the clustering of new cutoffs, over distances capped by the backwater length and over yearly to decadal timescales. Our research suggests that planform geometry and backwater controls might sway the occurrence of cutoff clusters – both local and nonlocal – thereby offering new testable hypotheses to explore the evolution of meandering-river landscapes that have significant implications for river engineering and stratigraphic modelling. © 2020 John Wiley & Sons, Ltd.  相似文献   
79.
Particular attention is paid to the risk of carbon dioxide (CO2) leakage in geologic carbon sequestration (GCS) operations, as it might lead to the failure of sequestration efforts and to the contamination of underground sources of drinking water. As carbon dioxide would eventually reach shallower formations under its gaseous state, understanding its multiphase flow behavior is essential. To this aim, a hypothetical gaseous leak of carbon dioxide resulting from a well integrity failure of the GCS system in operation at Hellisheiði (CarbFix2) is here modeled. Simulations show that migration of gaseous carbon dioxide is largely affected by formation stratigraphy, intrinsic permeability, and retention properties, whereas the initial groundwater hydraulic gradient (0.0284) has practically no effect. In two different scenarios, about 18.3 and 30.6% of the CO2 that would have been injected by the GCS system for 3 days could be potentially released again into the atmosphere due to a sustained leakage of the same duration. As the gaseous leak occurs, the aquifer experiences high pressure buildups, and the presence of a less conductive layer further magnifies these. Strikingly, the dimensional analysis showed that buoyant and viscous forces can be comparable over time within the predicted gaseous plumes, even far from the leakage source. Local pressure gradients, buoyant, viscous, and capillary forces all play an important role during leakage. Therefore, neglecting one or more of these contributions might lead to a partial prediction of gaseous CO2 flow behavior in the subsurface, giving space to incorrect interpretations and wrong operational choices.  相似文献   
80.
The 2.08-Ma Cerro Galán Ignimbrite (CGI) represents a >630-km3 dense rock equivalent (VEI 8) eruption from the long-lived Cerro Galán magma system (∼6 Ma). It is a crystal-rich (35–60%), pumice (<10% generally) and lithic-poor (<5% generally) rhyodacitic ignimbrite, lacking a preceding plinian fallout deposit. The CGI is preserved up to 80 km from the structural margins of the caldera, but almost certainly was deposited up to 100 km from the caldera in some places. Only one emplacement unit is preserved in proximal to medial settings and in most distal settings, suggesting constant flow conditions, but where the pyroclastic flow moved into a palaeotopography of substantial valleys and ridges, it interacted with valley walls, resulting in flow instabilities that generated multiple depositional units, often separated by pyroclastic surge deposits. The CGI preserves a widespread sub-horizontal fabric, defined by aligned elongate pumice and lithic clasts, and minerals (e.g. biotite). A sub-horizontal anisotropy of magnetic susceptibility fabric is defined by minute magnetic minerals in all localities where it has been analysed. The CGI is poor in both vent-derived (‘accessory’) lithics and locally derived lithics from the ground surface (‘accidental’) lithics. Locally derived lithics are small (<20 cm) and were not transported far from source points. All data suggest that the pyroclastic flow system producing the CGI was characterised throughout by high sedimentation rates, resulting from high particle concentration and suppressed turbulence at the depositional boundary layer, despite being a low aspect ratio ignimbrite. Based on these features, we question whether high velocity and momentum are necessary to account for extensive flow mobility. It is proposed that the CGI was deposited by a pyroclastic flow system that developed a substantial, high particle concentration granular under-flow, which flowed with suppressed turbulence. High particle concentration and fine-ash content hindered gas loss and maintained flow mobility. In order to explain the contemporaneous maintenance of high particle concentration, high sedimentation rate at the depositional boundary layer and a high level of mobility, it is also proposed that the flow(s) was continuously supplied at a high mass feeding rate. It is also proposed that internal gas pressure within the flow, directed downwards onto the substrate over which the flow was passing, reduced the friction between the flow and the substrate and also enhanced its mobility. The pervasive sub-horizontal fabric of aligned pumice, lithic and even biotite crystals indicates a consistent horizontal shear force existed during transport and deposition in the basal granular flow, consistent with the existence of a laminar, shearing, granular flow regime during the final stages of transport and deposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号